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Abstract. We propose a new approach to calculate perturbatively the effects of a particular
deformed Heisenberg algebra on an energy spectrum. We use this method to calculate the harmonic
oscillator spectrum and find that the corrections are in agreement with a previous calculation.
Then, we apply this approach to obtain the hydrogen atom spectrum and we find that splittings of
degenerate energy levels appear. Comparison with experimental data yields an interesting upper
bound for the deformation parameter of the Heisenberg algebra.

1. Introduction

The study of modified Heisenberg algebra, by adding certain small corrections to the canonical
commutation relations, has aroused a great interest for some years (see, for example, [1–
5]). These modifications yield new short-distance structure characterized by a finite minimal
uncertainty1x0 in position measurements. The existence of this minimal observable length
has been suggested by quantum gravity and string theory [6–10]. In this context, the new short-
distance behaviour would arise at the Planck scale and1x0 would correspond to a fundamental
quantity closely linked with the structure of spacetime [11]. This feature constitutes a part of
the motivation to study the effects of this modified algebra on various observables.

Recently, it has been suggested that this formalism could also be used to describe, as an
effective theory, non-pointlike particles, e.g. hadrons, quasi-particles or collective excitations
[3]. In this case,1x0 is interpreted as a parameter linked with the structure of particles and
their finite size. In the work [3] thed-dimensional isotropic harmonic oscillator was solved,
in the context of a non-vanishing1x0, with particular interest in the three-dimensional case.
This calculation shows that splittings of the usual degenerate energy levels appear, leaving
only the degeneracy due to the independence of the energy on the azimuthal quantum number,
m. It has also been indicated that application to the hydrogen atom should yield the relation
between the scale of a non-pointlikeness of the electron and the scale of the effects caused on
the hydrogen spectrum. Indeed, the high precision of the experimental data for the transition
1S–2S [12], for example, can yield an interesting upper bound for the possible, in the sense
studied here, finite size of the electron.

The purpose of this work is to continue to investigate whether the ansatz concerning
the deformation of the Heisenberg algebra, with a suitably adjusted scale, may also serve
for an effective low-energy description of non-pointlike particles. In this way, we calculate
corrections to the hydrogen spectrum using the minimally modified Heisenberg algebra, i.e.
which preserves the commutation relations between position operators. To perform this
calculation we propose a new approach which allows us to solve the Schrödinger equation
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in the position representation. This method leads to the correct harmonic oscillator spectrum
found in [3]. Application to the hydrogen atom shows that splittings of the usual degenerate
energy levels are also present and that these corrections cannot be seen experimentally if1x0

is smaller than 0.01 fm.

2. Method

The modified Heisenberg algebra studied here, as in [3], is defined by the following
commutation relations (¯h = c = 1):

[X̂i, P̂j ] = i
(
δij + βδij P̂

2 + β ′P̂i P̂j
)

[P̂i , P̂j ] = 0
(1)

whereP̂ 2 = ∑3
i=1 P̂i P̂i and whereβ, β ′ > 0 are considered as small quantities of the first

order. In this paper, we study only the caseβ ′ = 2β, which leaves the commutation relations
between the operatorŝXi unchanged [3], i.e. [̂Xi, X̂j ] = 0. This constitutes the minimal
extension of the Heisenberg algebra and is thus of special interest.

To calculate a spectrum for a given potential we must find a representation of the operators
X̂i andP̂i , involving position variablesxi and partial derivatives with respect to these position
variables, which satisfies equations (1), and solve the corresponding Schrödinger equation[

P̂ 2

2m
+ V ( ÊX)

]
9(Ex) = E9(Ex). (2)

It is straightforward to verify that the following representations fulfil the relations (1), to first
order inβ:

X̂i9(Ex) = xi9(Ex)
P̂i9(Ex) = pi

(
1 +β Ep 2

)
9(Ex) with pi = 1

i

∂

∂xi
.

(3)

Neglecting terms of orderβ2, the Schr̈odinger equation (2) takes the form[ Ep 2

2m
+
β

m
Ep 4 + V (Ex)

]
9(Ex) = E9(Ex). (4)

This is the ordinary Schrödinger equation with an additional term proportional toEp 4. As this
correction is assumed to be small, we calculate its effects on energy spectra in the first order of
perturbations. The evaluation of the spectrum to the first order in the deformation parameter
β leads to

Ek = E0
k +1Ek (5)

wherek denotes the set of quantum numbers which labels the energy level and where1Ek are
the eigenvalues of the matrix

β

m
〈90

k (Ex)| Ep 4|90
k′(Ex)〉 ≡

β

m
〈k| Ep 4|k′〉 (6)

where90
k (Ex) are solutions of (4) withβ = 0. This matrix is computed with all the

wavefunctions corresponding to the unperturbed energy levelE0
k . This is ag×gmatrix where

g is the multiplicity of the stateE0
k considered. In general,1Ek takesf (f 6 g) different

values which removes the degeneracy of some energy levels. For an arbitrary interactionV (Ex)
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used in the Schrödinger equation, the matrix (6) is non-diagonal. However, since we know
the action ofEp 2 (from equation (4)) on the unperturbed wavefunctions, the expression of the
matrix elements, for a central potential, can be written as

4βm
((
E0
n,`

)2
δnn′ − (E0

n,` +E0
n′,`)〈n`m|V (r)|n′`m〉 + 〈n`m|V (r)2|n′`m〉

)
δ``′δmm′ (7)

and, in the cases studied here, there are no degenerate states with equal values of angular
momentum̀ and azimuthal quantum numbermwhich have different values of radial quantum
numbern. Thus the matrix (6) is diagonal and the correction to the spectrum can be written as

1En,` = 4βm
((
E0
n,`

)2 − 2E0
n,`〈n`m|V (r)|n`m〉 + 〈n`m|V (r)2|n`m〉

)
. (8)

This nice relation can be simplified if one considers the power-law central potential,V (r) ∼ rp.
In this case, the virial theorem gives

〈n`m|V (r)|n`m〉 = 2

p + 2
E0
n,` (9)

which leads to the following form for the expression of the energy level shift in the first order
in β:

1En,` = 4βm

((
E0
n,`

)2(p − 2

p + 2

)
+ 〈n`m|V (r)2|n`m〉

)
. (10)

This simple expression will allow us to find the correction of the harmonic oscillator and
hydrogen spectra just by calculating the mean value of the square of the potential.

3. Harmonic oscillator

For this potential, the energy level shift is only given by the mean value of the square of the
potential. The normalized unperturbed wavefunction of the harmonic oscillator reads

90
n`m(Er) = λ3/2

√
2n!

0
(
n + ` + 3

2

) (λr)` e−(λr)
2/2L`+1/2

n

(
(λr)2

)
Y`m(θ, ϕ) (11)

whereλ = √mω andLαn(x) are Laguerre polynomials [13] (p 1037).n is the radial quantum
number. Using the change of variablex = (λr)2, the energy shift is found to be

1En,` = 4βm(n!)k2

λ40
(
n + ` + 3

2

) ∫ ∞
0
x`+5/2 e−x

[
L`+1/2
n (x)

]2
dx (12)

where 2k = mω2 is the strength of the oscillator force. The calculation of the remaining integral
is straightforward. Knowing the following relations concerning the Laguerre polynomials [13]
(p 1037, p 844)

Lα−1
n (x) = Lαn(x)− Lαn−1(x) (13)∫ ∞
0

e−xxα Lαn(x) L
α
m(x) dx = 0(α + n + 1)

n!
δnm (14)

we obtain the expression of the harmonic oscillator spectrum for the modified Heisenberg
algebra (1)

En,` = ω
(
2n + ` + 3

2

)
+ (1x0)

2 1
5mω

2
(
6n2 + 9n + 6n` + `2 + 4` + 15

4

)
(15)

where1x0 =
√

5β. This formula reproduces exactly the splittings calculated in [3] using
another approach. Because the dependence on quantum numbers of the correction term is not
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of the formf (2n+ `), we obtain splittings of degenerate levels. However, the energy does not
depend on the azimuthal quantum numberm and each level remains(2` + 1)-fold degenerate.

This example shows the usefulness of this approach which provides, with simple
calculations, an analytical expression of the energy shift. The main interest of this method
is that it can easily be used to solve other problems analytically or numerically, such as the
Coulomb problem which is solved in the next section.

4. Hydrogen atom

As we mentioned in the introduction, the evaluation of corrections of the energy spectrum can
provide information concerning, in the sense studied here, an assumed finite size of electrons.
The method used here to describe non-pointlike particles neglects the internal structure degree
of freedom. However, obviously these effects have a much smaller order of magnitude and
thus can be omitted.

The normalized unperturbed wavefunction of the hydrogen atom reads

90
n`m(Er) = (2γn)3/2

√
(n− `− 1)!

2n(n + `)!
(2γnr)

` e−γnr L2`+1
n−`−1(2γnr) Y`m(θ, ϕ) (16)

whereγn = mα/n andα is the fine structure constant.n is the principal quantum number and
` varies between 0 andn− 1. The change of variablex = 2γnr allows us to write the energy
shift as

1En,` = −12βm
(
E0
n,`

)2
+ 8βmγ 2

n α
2 (n− `− 1)!

n(n + `)!

∫ ∞
0
x2` e−x

[
L2`+1
n−`−1(x)

]2
dx. (17)

As for the harmonic oscillator problem, the evaluation of this integral is quite simple. Indeed,
using the following relation for Laguerre polynomials [13] (p 1038)

n∑
m=0

Lαm(x) = Lα+1
n (x) (18)

with the relation (14) and the following summation formula

b∑
p=0

(p + a)!

p!
= (a + b + 1)!

(1 +a)b!
(19)

the expression of the hydrogen spectrum, in the first order in the deformation parameterβ,
reads

En,` = −mα
2

2n2
+ (1x0)

2m
3α4

5

(
4n− 3

(
` + 1

2

))
n4
(
` + 1

2

) . (20)

This formula shows that the corrections to the spectrum are always positive. The value of
this additional term is maximum for the ground state and for each value ofn, the maximal
contribution is obtained for̀ = 0 levels. As for the harmonic oscillator case, the correction
term, which depends explicitly oǹ, lifts the degeneracy of energy levels which remain,
however,(2` + 1)-fold degenerate.

The accuracy concerning the measurement of the frequency of the radiation emitted during
the transition 1S–2S is about 1 kHz [12]. Thus the energy difference between this two levels is
determined with a precision of about 10−12 eV. Then, if we assume that the effects of electrons
of finite size cannot yet be seen experimentally, we find

1x0 6 0.01 fm. (21)
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However, corrections calculated here could already play a role in the theoretical description
of the hydrogen atom, since the accuracy of theoretical calculations is less than the precision
of experimental data. The main theoretical error is the determination of the proton charge
radius. Thus, at the moment, comparison between experimental data and standard theoretical
calculations cannot exclude the effects studied in this paper.

Nevertheless, the upper bound (21) seems to be reasonable. Moreover, a naive argument
can give an order of magnitude of an ‘experimental’ upper bound for the finite size of the
electron. Indeed, a lower bound for the mass of an excited state of the electron is about
85 GeV [14]. Thus a photon with an energy of about 85 GeV cannot excite an electron. In a
first approximation, this means that the resolution obtained with this photon is not sufficient
to detect finite-sized electrons. The wavelength of such a photon could constitute an upper
bound for the size of electrons,

1x0 6 λ ∼ 0.015 fm. (22)

This naive argument applied to the nucleon and its first radial excitation N(1440) yields a size
of about 2.5 fm which is the correct order of magnitude.

Thus in the (very?) near future, with an improvement of the accuracy of experimental data
and, above all, an improvement of the precision of standard theoretical calculations, it could
be possible either to lower the upper bound (21) or to detect the existence of a non-vanishing
1x0.

5. Summary

We have proposed a new formulation of the Schrödinger equation which takes into account
the deformation of the Heisenberg algebra in the first order in the deformation parameterβ.
This modified algebra introduces a minimal observable length in the uncertainty relations. It
has been proposed in [3] that this framework could be used to describe non-pointlike particles
as an effective low-energy theory, neglecting their internal structure degree of freedom. The
minimal length1x0 would then be linked with the non-pointlikeness of particles.

In section 3, we have calculated, with the new approach, the corrections to the harmonic
oscillator spectrum which are in agreement with those derived in a previous calculation using
another approach [3]. Note that this method can be generalized to other dimensions. In
particular, we have verified that the spectrum of the one-dimensional harmonic oscillator is in
agreement with that found in [1]. Moreover, the wavefunction in position space can also be
calculated, in the first order inβ, just as various observables associated to the systems studied.

In section 4, we have used this method to obtain the corrections to the hydrogen atom
spectrum. Comparison with the experimental data for the transition 1S–2S [12] yields a
plausible upper bound for the non-pointlikeness1x0 of the electron which is about 0.01 fm.

The formulation of the Schrödinger equation proposed here could prove to be very useful
for studying properties of some systems and their various associated observables in the context
of the deformed Heisenberg algebra studied here.
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